近日,我校材料与环境学院
论文针对有机废水处理难题,聚焦于制备具有异质结结构的Si3N4-PbO2纳米复合电极,同时对Si3N4纳米颗粒和PbO2晶体(110和101晶面)的结合能进行了计算,通过理论计算验证了该电极的优异性能,并将其应用于磺胺噻唑的降解过程中,探究了磺胺噻唑的降解机理和反应活性位点等,同时验证了该电催化降解磺胺噻唑的过程是生理毒性逐步降低的趋势。该研究成果在高污染废水处理领域具有良好的应用前景。
近年来,在院长
Figure 1 SEM images of (a) PbO2 electrode, (b) Si3N4-PbO2-2 g L-1, (c) Si3N4-PbO2-4 g L-1, (d)Si3N4-PbO2-6 g L-1, (e) Enlarged image of (d), (f) Si3N4-PbO2- 8 g L-1, 3D confocal laser microscope(X2000) of (g) PbO2 electrode (h) Si3N4-PbO2-6 g L-1 electrode, EDS mapping images of (i) Pb, (j) O,(k) Si, (l) N
Figure 2 XRD patterns of Si3N4-PbO2 electrode and PbO2 electrode
Figure 3 Water adsorption energy model (a)PbO2 (b) Si3N4-PbO2
Figure 4 Minimum energy pathway for water adsorption, ·OH generation and desorption process on (a) PbO2 and (b) Si3N4-PbO2 calculate with NEB.
Figure 5 Fukui functions (a) , (b), (c) , (d) dual descriptor (DD), (e) optimized structure of sulfathiazole
Figure 6 Possible degradation pathway of sulfathiazole