
近日,信通学院2021级本科生邓皓宇在机器学习领域顶级会议International Conference on Machine Learning(ICML)发表题为“Exploring the Low-Pass Filtering Behavior in Image Super-Resolution”的图像超分辨率可解释性工作。

图像超分辨率是一种提高图像分辨率的技术,被广泛应用于各个领域。进行图像超分辨率的算法有许多种,例如插值法,字典学习法,深度学习等。得益于深度学习技术的发展,图像超分辨率技术也取得了显著进步。但是由于深度学习缺乏可解释性,图像超分任务所采用模型背后的机理尚未探明。

图1. 图像超分示意图
受到数字信号处理中上采样器的原理启发,该文章对网络进行了冲激响应

图2. 神经网络的冲激响应与sinc函数对比

图3. 左:HyRA的线性系统和非线性系统的响应及其频谱。右:FSDS指标与主流SSIM指标的对比,SSIM指标不能很好地反应高频失真
为了验证这一发现,文章提出了一种名为“混合响应分析(HyRA)”的方法。HyRA将一个网络视作一个线性系统和非线性系统的并行连接(图3左)。为了使这样的拆分有意义,文章提出该非线性系统的冲激响应应该为0,并证明了这样的约束不影响分析。使用HyRA分析,文章发现线性系统的职责是滤除部分0插值引起的周期延拓以实现一定程度的超分,但是由于滤波器的性能较差,不能较完美地实现超分。非线性部分在修正线性系统带来的失真的同时,同时注入学习到的高频信息。
此外,为了量化地评价网络注入高频的能力,文章还提出了一种名为“频谱分布相似性(FSDS)”的图像质量评价指标(FSDS)用于定量分析网络注入的高频信息。FSDS指标描述了图像的频谱上的功率分布的相似性。实验证明,相较于现有的主流指标(如PSNR、SSIM等),FSDS指标能够更有效地反应出不同程度的频谱失真,详见图3右。

图4. 邓皓宇在奥地利维也纳的ICML会议上与国际同行进行交流
邓皓宇在2021年通过校级教改项目“一年级新生课外实践项目—卷积神经网络原理及其在视觉问题上的应用”,进入数学学院
据悉,“卓越成长计划”是信通学院贯彻落实教育部关于“坚持科教融合、加强
论文信息:
Haoyu Deng, et al., Exploring the Low-Pass Filtering Behavior in Image Super-Resolution, International Conference on Machine Learning (ICML), 2024
项目代码链接:https://github.com/RisingEntropy/LPFInISR
论文地址:http://arxiv.org/abs/2405.07919
来源:电子科大官网

往期回顾




